Selasa, 12 Maret 2013

Besaran Dan Satuan



Besaran Dan Satuan
1. Besaran Pokok
Besaran-besaran dalam fisika dapat dikelompokkan menjadi dua macam, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang satuannya didefinisikan atau ditetapkan terlebih dahulu, yang  berdiri sendiri, dan tidak tergantung pada besaran lain. Para ahli merumuskan tujuh macam besaran pokok, seperti yang ditunjukkan pada Tabel 
2. Sistem Satuan
Satuan merupakan salah satu komponen besaran yang menjadi standar dari suatu besaran. Adanya berbagai macam satuan untuk besaran yang sama akan menimbulkan kesulitan. Kalian harus melakukan penyesuaian-penyesuaian tertentu untuk memecahkan persoalan yang ada. Dengan
adanya kesulitan tersebut, para ahli sepakat untuk menggunakan satu sistem satuan, yaitu menggunakan satuan standar Sistem Internasional, disebut Systeme Internationale d’Unites (SI).
Satuan Internasional adalah satuan yang diakui penggunaannya secara internasional serta memiliki standar yang sudah baku. Satuan ini dibuat untuk menghindari kesalahpahaman yang timbul dalam bidang ilmiah karena adanya perbedaan satuan yang digunakan. Pada awalnya, Sistem Internasional disebut sebagai Metre – Kilogram – Second (MKS). Selanjutnya pada Konferensi Berat dan Pengukuran Tahun 1948, tiga satuan yaitu newton (N), joule (J), dan watt (W) ditambahkan ke dalam SI. Akan tetapi, pada tahun 1960, tujuh Satuan Internasional dari besaran pokok telah ditetapkan yaitu meter, kilogram, sekon, ampere, kelvin, mol, dan kandela.
Sistem MKS menggantikan sistem metrik, yaitu suatu sistem satuan desimal yang mengacu pada meter, gram yang didefinisikan sebagai massa satu sentimeter kubik air, dan detik. Sistem itu juga disebut sistem Centimeter – Gram – Second (CGS).
Satuan dibedakan menjadi dua jenis, yaitu satuan tidak baku dan satuan baku. Standar satuan tidak baku tidak sama di setiap tempat, misalnya jengkal dan hasta. Sementara itu, standar satuan baku telah ditetapkan sama di setiap tempat.
1. Satuan Standar Panjang
Satuan besaran panjang berdasarkan SI dinyatakan dalam meter (m). Ketika sistem metrik diperkenalkan, satuan meter diusulkan setara dengan sepersepuluh juta kali seperempat garis bujur bumi yang melalui kota Paris. Tetapi, penyelidikan awal geodesik menunjukkan ketidakpastian standar ini, sehingga batang platinairidium yang asli dibuat dan disimpan di Sevres dekat Paris, Prancis. Jadi, para ahli menilai bahwa meter standar itu kurang teliti karena mudah berubah.
Para ahli menetapkan lagi patokan panjang yang nilainya selalu konstan. Pada tahun 1960 ditetapkan bahwa satu meter adalah panjang yang sama dengan 1.650.763,73 kali panjang gelombang sinar jingga yang dipancarkan oleh atom-atom gas kripton-86 dalam ruang hampa pada suatu loncatan listrik. Definisi baru menyatakan bahwa satuan panjang SI adalah panjang lintasan yang ditempuh cahaya dalam ruang hampa selama selang waktu 299.792.458 1sekon.
Angka yang sangat besar atau sangat kecil oleh ilmuwan digambarkan menggunakan awalan dengan suatu satuan untuk menyingkat perkalian atau pembagian dari suatu satuan.
b. Satuan Standar Massa
Satuan standar untuk massa adalah kilogram (kg). Satu kilogram standar adalah massa sebuah silinder logam yang terbuat dari platina iridium yang disimpan di Sevres, Prancis. Silinder platina iridium memiliki diameter 3,9 cm dan tinggi 3,9 cm. Massa 1 kilogram standar mendekati
massa 1 liter air murni pada suhu 4 oC.
c. Satuan Standar Waktu
Satuan SI waktu adalah sekon (s). Mula-mula ditetapkan bahwa satu sekon sama dengan 1/86.400rata-rata gerak semu matahari mengelilingi Bumi. Dalam pengamatan astronomi, waktu ini ternyata kurang tepat akibat adanya pergeseran, sehingga tidak dapat digunakan sebagai patokan. Selanjutnya, pada tahun 1956 ditetapkan bahwa satu sekon adalah waktu yang dibutuhkan atom cesium-133 untuk bergetar sebanyak 9.192.631.770 kali.
d. Satuan standar arus listrik
Satuan standar arus listrik adalah ampere (A). Satu ampere didefinisikan sebagai arus tetap, yang dipertahankan untuk tetap mengalir pada dua batang penghantar sejajar dengan panjang tak terhingga, dengan luas penampang yang dapat diabaikan dan terpisahkan sejauh satu meter dalam vakum, yang akan menghasilkan gaya antara kedua batang penghantar sebesar 2 × 10–7 Nm–1.
e. Satuan Standar Suhu
Suhu menunjukkan derajat panas suatu benda. Satuan standar suhu adalah kelvin (K), yang didefinisikan sebagai satuan suhu mutlak dalam termodinamika yang besarnya sama dengan 1/273,16dari suhu titik tripel air. Titik tripel menyatakan temperatur dan tekanan saat terdapat
keseimbangan antara uap, cair, dan padat suatu bahan. Titik tripel air adalah 273,16 K dan 611,2 Pa. Jika dibandingkan dengan skala termometer Celsius, dinyatakan sebagai berikut:
T = 273,16o + tc
f. Satuan Standar Intensitas Cahaya
Intensitas cahaya dalam SI mempunyai satuan kandela (cd), yang besarnya sama dengan intensitas sebuah sumber cahaya yang memancarkan radiasi monokromatik dengan frekuensi 540 × 1012 Hz dan memiliki intensitas pancaran 1/683watt per steradian pada arah tertentu.
g. Satuan Standar jumlah Zat
Satuan SI untuk jumlah zat adalah mol. Satu mol setara dengan jumlah zat yang mengandung partikel elementer sebanyak jumlah atom di dalam 1,2 10-2 kg karbon-12. Partikel elementer merupakan unsur fundamental yang membentuk materi di alam semesta. Partikel ini dapat berupa atom, molekul, elektron, dan lain-lain.
  • 1. BESARAN DAN SISTEM SATUANLa Tahanghttp://myfortuner.wordpress.comEmail: tahang08@gmail.com
  • 2. 1.1 PENDAHULUANFisika :Ilmu pengetahuan yang mempelajari benda-benda dialam, gejala-gejala, kejadian-kejadian alam serta interaksi dari benda-benda dialam . Fisika merupakan ilmu pengetahuan dasar yang mempelajari sifat-sifat dan interaksi antar materi dan radiasi.Fisika merupakan ilmu pengetahuan yang didasarkan pada pengamatan eksperimental dan pengukuran kuantitatif (Metode Ilmiah).
  • 3. FisikaKlasikKuantum(setelah 1920)(sebelum 1920) Posisi dan Momentum partikel dapat ditetapkan secara tepatruang dan waktu merupakan dua hal yang terpisah Ketidak pastian Posisi dan Momentumpartikel ruang dan waktu merupakan satukesatuanHukum NewtonDualisme Gelombang-PartikelTeori Relativitas Einsten
  • 4. 1.2 BESARAN DAN SATUANBesaran : àSesuatu yang dapat diukur dinyatakan dengan angka (kuantitatif) Contoh : panjang, massa, waktu, suhu, dll.Mengukur : Membandingkan sesuatu dengan sesuatu yang lain yang sejenis yang ditetapkan sebagai satuan. contoh : panjang jalan 10 km Besaran Fisika baru terdefenisi jika :ada nilainya (besarnya)ada satuannyasatuannilai
  • 5. Satuan :Ukuran dari suatu besaran ditetapkan sebagai satuan.Contoh :meter, kilometer  satuanà panjangdetik, menit, jam  satuan waktugram, kilogramà  satuanà massadll.Sistem satuan : ada 2 macam Sistem Metrik : a. mks (meter, kilogram, sekon) b. cgs (centimeter, gram, sekon)2. Sistem Non metrik (sistem British)Sistem Internasional (SI) Sistem satuan mks  yang paling banyak dipakai sekarang ini.àyang telah disempurnakan  Dalam SI : Ada 7 besaran pokok berdimensi dan 2 besaran pokok tak berdimensi
  • 6. 7 Besaran Pokok dalam Sistem internasional (SI)Besaran Pokok Tak Berdimensi
  • 7. Dimensi Cara besaran itu tersusun oleh besaran pokok.- Guna Dimensi :Untuk menurunkan satuan dari suatu besaranUntuk meneliti kebenaran suatu rumus atau persamaan- Metode penjabaran dimensi :Dimensi ruas kanan = dimensi ruas kiriSetiap suku berdimensi samaBesaran TurunanBesaran yang diturunkan dari besaran pokok.
  • 8. Contoh :a. Tidak menggunakan nama khususb. Mempunyai nama khusus
  • 9.  massa volume perpindahan waktukecepatan waktuBesaran Turunan dan Dimensi
  • 10. Faktor Penggali dalam SI
  • 11. b. Berat Jenis = = = = MLT-2 (L-3) = ML-2T-2 satuan kgm-2 MLT -2 L3 berat volume Gaya Volume gaya luas MLT -2 L2 usaha waktu ML 2 T -2 TContoh Soal1. Tentukan dimensi dan satuannya dalam SI untuk besaran turunan berikut :a. Gayab. Berat Jenisc. Tekanand. Usahae. DayaJawab :a. Gaya = massa x percepatan = M x LT -2 = MLT -2 satuan kgms-2c. Tekanan = = = MLT -2 satuan kgm-1s-1d. Usaha = gaya x jarak = MLT -2 x L = ML 2 T -2 satuan kgm-2s-2e. Daya = = = ML 2 T -1 satuan kgm-2s-1
  • 12. 2. Buktikan besaran-besaran berikut adalah identik : a. Energi Potensial dan Energi Kinetik b. Usaha/Energi dan KalorJawab :a. Energi Potensial : Ep = mgh Energi potensial = massa x gravitasi x tinggi = M x LT-2 x L = ML2T-2Energi Kinetik : Ek = ½ mv2Energi Kinetik = ½ x massa x kecepatan2 = M x (LT-1) 2 = ML2T-2Keduanya (Ep dan  keduanya identikb. UsahaàEk) mempunyai dimensi yang sama  = ML2T-2 Energi = ML2T-2 Kalor = 0.24 x energi = ML2T-2Ketiganya memiliki  identikàdimensi yang sama

Animasi Fisika














Kamis, 07 Februari 2013

Tugas Fisika Artikel



dua galaksi yang kira-kira sebanding dan keduanya berada di jalur tabrakan
Senin, 15 Oktober 2012 - "Jika Anda mem
iliki dua galaksi yang kira-kira sebanding dan keduanya berada di jalur tabrakan, maka masing-masing lebih menembus ke pusat satu sama lain, sehingga ada lebih banyak massa yang berakhir di pusat."

Dengan menggunakan “lensa” gravitasional di ruang angkasa, para astronom Universitas Utah menemukan bahwa pusat galaksi-galaksi terbesar bertumbuh menjadi lebih padat – memberi bukti terjadinya tabrakan dan penggabungan secara berulang-ulang antar galaksi-galaksi raksasa.
“Kami menemukan bahwa selama 6 miliar tahun terakhir, materi yang membentuk galaksi elips raksasa semakin terkonsentrasi ke arah pusat galaksi. Ini merupakan bukti bahwa galaksi besar menabrak galaksi besar lainnya untuk membuat galaksi yang lebih besar,” kata astronom Adam Bolton, penulis utama dalam studi baru ini.
“Penelitian-penelitian paling terbaru sebelumnya telah menunjukkan bahwa galaksi besar bertumbuh dengan cara memangsa galaksi-galaksi yang lebih kecil dalam jumlah banyak,” tambahnya. “Kami menunjukkan bahwa tabrakan besar antar galaksi besar adalah sama pentingnya dengan makanan kecil yang banyak.”
Studi baru ini — yang dipublikasikan dalam The Astrophysical Journal –dikerjakan oleh tim Bolton dari Sloan Digital Sky Survey-III dengan menggunakan teleskop optik selebar 2,5 meter pada Apache Point, N.M., dan Teleskop Ruang Angkasa Hubble yang mengorbiti bumi.
Teleskop-teleskop ini pernah digunakan untuk mengamati dan menganalisa 79 “lensa gravitasional,” yang merupakan galaksi di antara bumi dan galaksi-galaksi yang jaraknya lebih jauh. Gravitasi galaksi lensa berguna dalam membelokkan cahaya yang berasal dari galaksi yang lebih jauh, menciptakan sebuah cincin atau sebagian cincin cahaya di sekitar galaksi lensa.
Ukuran cincin itu digunakan untuk menentukan massa pada setiap galaksi lensa, dan kecepatan bintang-bintangnya digunakan untuk menghitung konsentrasi massa di setiap galaksi lensa.
Bolton mengerjakan penelitian ini bersama dengan para tiga astronom lainnya dari Universitas Utah – peneliti pasca-doktoral Joel Brownstein, mahasiswa pascasarjana Yiping Shu dan sarjana Ryan Arneson -juga bersama para anggota Sloan Digital Sky Survey: Christopher Kochanek dari Universitas Ohio State; David Schlegel dari Lawrence Berkeley National Laboratory; Daniel Eisenstein dari Harvard-Smithsonian Center for Astrophysics; David Wake dari Universitas Yale; Natalia Connolly dari Hamilton College, Clinton, NY; Claudia Maraston dari Universitas Portsmouth, Inggris, dan Benjamin Weaver dari Universitas New York.
Makanan besar dan makanan kecil untuk galaksi elips raksasa
Studi baru ini berurusan dengan jenis galaksi-galaksi elips terbesar yang pernah diketahui, masing-masing berisi sekitar 100 milyar bintang. Dengan menghitung “materi gelap” yang tak terlihat, galaksi-galaksi itu mengandung massa sebesar 1 triliun bintang seperti matahari kita.
“Mereka adalah produk akhir dari semua tabrakan dan penggabungan generasi-generasi galaksi sebelumnya, mungkin ratusan tabrakan,” kata Bolton.
Meskipun bukti terbaru dari studi lain menunjukkan bahwa galaksi elips raksasa bertumbuh dengan memangsa galaksi yang jauh lebih kecil, namun simulasi komputer Bolton sebelumnya menunjukkan bahwa tabrakan antar galaksi besar adalah satu-satunya penggabungan galaksi yang mengarah pada meningkatnya kepadatan massa di pusat galaksi elips raksasa.
Ketika sebuah galaksi kecil bergabung dengan yang lebih besar, polanya berbeda. Galaksi kecil terkoyak-koyak oleh gravitasi dari galaksi besar. Bintang-bintang dari galaksi kecil tetap berada di dekat pinggiran galaksi besar, bukan pusatnya.
“Tapi jika Anda memiliki dua galaksi yang kira-kira sebanding dan keduanya berada di jalur tabrakan, maka masing-masing lebih menembus ke pusat satu sama lain, sehingga ada lebih banyak massa yang berakhir di pusat,” kata Bolton.
Penelitian terbaru lainnya menunjukkan bahwa bintang-bintang menyebar lebih luas ke dalam galaksi dari waktu ke waktu, mendukung gagasan bahwa galaksi besar memangsa galaksi-galaksi yang jauh lebih kecil.
“Kami menemukan bahwa galaksi-galaksi itu semakin terkonsentrasi pada massa mereka dari waktu ke waktu meskipun kurang terkonsentrasi pada cahaya yang mereka pancarkan,” kata Bolton.
Bolton meyakini bahwa tabrakan antar galaksi besar menjelaskan bertumbuhnya konsentrasi massa tersebut, sedangkan galaksi yang menelan galaksi-galaksi kecil lebih menjelaskan cahaya bintang yang jaraknya jauh dari pusat galaksi.
“Kedua proses ini penting untuk menjelaskan gambarannya secara keseluruhan,” kata Bolton. “Cara berkembangnya cahaya bintang tidak dapat dijelaskan dengan tabrakan besar, jadi kita benar-benar membutuhkan kedua jenis tabrakan, yaitu tabrakan besar dan kecil — Yang besar dalam jumlah sedikit dan yang kecil dalam jumlah banyak.”
Gambar ini diambil dari Teleskop Ruang Angkasa Hubble, menunjukkan cincin cahaya dari galaksi jauh yang tercipta saat galaksi dekat berada pada latar depan — tidak ditunjukkan dalam gambar ini — bertindak sebagai “lensa gravitasional” untuk membengkokkan cahaya dari galaksi jauh sehingga membentuk cincin cahaya yang dikenal sebagai cincin Einstein. Dalam studi baru, astronom Adam Bolton beserta para kolega mengukur cincin ini untuk menentukan massa dari 79 galaksi lensa yang merupakan galaksi-galaksi elips raksasa. Studi ini menemukan bahwa pusat galaksi-galaksi besar itu semakin memadat dari waktu ke waktu, menjadi bukti terjadinya tabrakan berulang antar galaksi-galaksi raksasa. (Kredit: Joel Brownstein, Universitas Utah, untuk NASA/ESA dan Sloan Digital Sky Survey)
Studi ini juga menunjukkan bahwa tabrakan antar galaksi besar adalah “tabrakan kering” — artinya, galaksi-galaksi yang bertabrakan mengalami kekurangan gas dalam jumlah besar karena sebagian besar gasnya sudah membeku untuk membentuk bintang — dan bahwa galaksi-galaksi yang bertabrakan tidak saling memukul dalam posisi lurus satu sama lain, atau yang diistilah Bolton sebagai “pukulan menyerempet”.
Sloan Bertemu Hubble: Bagaimana Studi Dilakukan
Universitas Utah bergabung pada tahap ketiga Sloan Digital Sky Survey, yang dikenal sebagai SDSS-III, pada tahun 2008. Dengan melibatkan sekitar 20 lembaga riset di seluruh dunia, proyek yang terus berlanjut hingga tahun 2014 ini merupakan upaya internasional dalam memetakan luar angkasa sebagai cara untuk mencari planet-planet raksasa dalam sistem tata surya lain, mempelajari asal usul galaksi dan ekspansi alam semesta, serta menyelidiki materi gelap dan energi gelap misterius yang membentuk sebagian besar alam semesta.
Bolton mengatakan bahwa studi barunya ini “nyaris berkuah” dengan menyertakan sebuah proyek SDSS-III bernama BOSS (Baryon Oscillation Spectrographic Survey). BOSS berupaya dalam mengukur sejarah ekspansi alam semesta dengan presisi yang belum pernah terjadi sebelumnya. Hal itu memungkinkan para ilmuwan untuk mempelajari energi gelap yang mempercepat perluasan alam semesta. Alam semesta diyakini hanya terdiri dari 4 persen materi biasa, 24 persen “materi gelap” kasat mata dan 72 persen energi gelap yang belum-terjelaskan.
Selama penelitian BOSS terhadap galaksi-galaksi, komputer yang menganalisis spektrum cahaya yang dipancarkan galaksi mengungkap puluhan lensa gravitasional, yang ditemukan karena tanda-tanda alam dari dua galaksi yang berbeda berada dalam satu garis.
Gambar dari Teleskop Luar Angkasa Hubble ini sama dengan gambar sebelumnya, tapi tidak melalui pengolahan yang sama. Hasilnya, cincin Einstein dari galaksi jauh menjadi kurang tajam, namun galaksi “lensa gravitasional”-nya menjadi terlihat pada bagian tengah gambar. (Kredit: Joel Brownstein, Universitas Utah, untuk NASA/ESA dan Sloan Digital Sky Survey)
Studi Bolton melibatkan 79 lensa gravitasional yang terobservasi dari dua survei:
  • Survei Sloan dan Teleskop Ruang Angkasa Hubble yang mengumpulkan gambar serta spektrum warna pancaran sinar dari galaksi-galaksi tua yang jaraknya relatif dekat — meliputi 57 lensa gravitasional — 1 milyar hingga 3 milyar tahun di masa lalu.
  • Survei lain yang mengidentifikasi 22 lensa di antara galaksi-galaksi muda yang berjarak lebih jauh, dari 4 miliar hingga 6 miliar tahun di masa lalu.
Cincin cahaya di seputar galaksi lensa gravitasional dinamakan “Cincin Einstein” karena Albert Einstein pernah memprediksi efeknya, meskipun Beliau bukanlah orang pertama yang melakukannya.
“Galaksi-galaksi yang lebih jauh mengirimkan sinar cahaya yang berpencar, namun sinar-sinar yang melintas di dekat galaksi yang lebih dekat bisa dibengkokkan menjadi kesatuan sinar cahaya yang tampak oleh kita sebagai cincin cahaya di seputar galaksi dekat,” kata Bolton.
Semakin besar jumlah materi dalam sebuah galaksi lensa, maka semakin besar pula cincinnya. Itu tampaknya berlawanan dengan intuisi, namun massa yang lebih besar memiliki tarikan gravitasi yang cukup untuk membuat jalur lintasan cahaya bintang jauh sedemikian menikung sehingga bisa terlihat oleh pengamat, menciptakan sebuah cincin yang lebih besar.
Jika terdapat lebih banyak materi yang terkonsentrasi di dekat pusat galaksi, bintang-bintang yang lebih cepat akan terlihat bergerak mendekati atau menjauhi pusat galaksi, kata Bolton.
Teori-teori Alternatif
Bolton dan rekan-rekannya mengakui bahwa pengamatan mereka ini dapat dijelaskan dengan teori-teori lain selain gagasan galaksi yang semakin memadatkan pusatnya dari waktu ke waktu:
  • Gas yang runtuh untuk membentuk bintang dapat meningkatkan konsentrasi massa dalam sebuah galaksi. Bolton berpendapat bintang-bintang dalam galaksi tersebut sudah terlalu tua untuk menguatkan penjelasan ini.
  • Gravitasi dari galaksi-galaksi terbesar menanggalkan galaksi-galaksi “satelit” pada pinggirannya, meninggalkan lebih banyak massa yang terkonsentrasi di pusat galaksi satelit. Bolton berpendapat proses tersebut tidak mungkin bisa menghasilkan konsentrasi massa yang telah terobservasi dalam studi baru ini dan menjelaskan bagaimana tingkat massa pusat berkembang dari waktu ke waktu.
  • Para peneliti hanya mendeteksi batas pada tiap galaksi antara wilayah bagian dalam yang didominasi bintang dan wilayah bagian luar, yang didominasi materi gelap kasat mata. Berdasarkan hipotesis ini, tampilan konsentrasi massa galaksi yang berkembang dari waktu ke waktu itu adalah karena adanya suatu kebetulan dalam metode pengukuran dari para peneliti – mereka mengukur galaksi-galaksi muda pada area yang lebih jauh dari pusatnya dan mengukur galaksi-galaksi tua pada area yang lebih dekat dari pusatnya, menghadirkan ilusi konsentrasi massa di pusat galaksi yang bertumbuh dari waktu ke waktu. Bolton berpendapat bahwa perbedaan pengukuran ini terlalu kecil untuk menjelaskan pola yang terobservasi pada kepadatan materi di dalam galaksi-galaksi lensa.